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SUMMARY

Jellyfish are radially symmetric organisms without a brain that arose more than 500 million years ago. They
achieve organismal behaviors through coordinated interactions between autonomously functioning body
parts. Jellyfish neurons have been studied electrophysiologically, but not at the systems level. We introduce
Clytia hemisphaerica as a transparent, genetically tractable jellyfish model for systems and evolutionary
neuroscience. We generate stable F1 transgenic lines for cell-type-specific conditional ablation and whole-
organism GCaMP imaging. Using these tools and computational analyses, we find that an apparently
diffuse network of RFamide-expressing umbrellar neurons is functionally subdivided into a series of spatially
localized subassemblies whose synchronous activation controls directional food transfer from the tentacles
to the mouth. These data reveal an unanticipated degree of structured neural organization in this species.
Clytia affords a platform for systems-level studies of neural function, behavior, and evolution within a clade
of marine organisms with growing ecological and economic importance.

INTRODUCTION

Jellyfish offer insights into the structure, function, and evolution
of nervous systems: they are apparent ‘‘living fossils,’’ whose
last common ancestor with bilaterians emerged just after the
appearance of neurons (Figure 1A) (Arendt et al., 2016; Cart-
wright et al., 2007). Jellyfish use neurons homologous to our
own (Arendt et al., 2016; Bosch et al., 2017), but lack centraliza-
tion (i.e., ‘‘brains’’). How such organisms are able to feed them-
selves, navigate, escape from predators, and even sleep
(Mackie, 2004; Nath et al., 2017; Lewis and Long, 2005; Meech,
2019) in the absence of a central brain poses an important prob-
lem in the field of evolutionary neurobiology, with implications for
autonomous systems engineering (Nawroth et al., 2012). Jelly-
fish are also attracting growing interest as critical components
of ocean ecosystems, in part due to jellyfish blooms and their
negative economic impact (Condon et al., 2013; Graham et al.,
2014; Hays et al., 2018).

Despite the importance of jellyfish to evolution, ecology, and
economics, remarkably little is known about the neural control
of their behavior. Jellyfish neurons have been studied extensively
using single-unit electrophysiological recordings (Meech, 2019;
Satterlie, 2002), but systems-level analysis has been absent

due to the lack of a genetically tractable model. Attractive fea-
tures of jellyfish for systems neuroscience include their small
size, relative planarity, and transparency, facilitating optical ap-
proaches (Katsuki and Greenspan, 2013; Meech, 2019; Bosch
et al., 2017). Existing cnidarian genetic neuroscience models,
such as Hydra (Dupre and Yuste, 2017; Tzouanas et al., 2021;
Badhiwala et al., 2021), lack a jellyfish life cycle stage (Künzel
et al., 2010; Renfer et al., 2010; Wittlieb et al., 2006).
Here, we introduce the hydrozoan jellyfish Clytia hemisphaer-

ica, originally established to study early development and evolu-
tion (Houliston et al., 2010), as a genetic model for systems
neuroscience. The Clytia genome has been sequenced (Leclère
et al., 2019) and an atlas of its cell types generated using single-
cell RNA sequencing (scRNA-seq) (Chari et al., 2021). CRISPR/
Cas9-mediated gene knockout has been reported (Momose
et al., 2018), but transgenesis has not yet been established.
In this inaugural study, we describe the generation of stable

Clytia F1 transgenic lines for population neural imaging and
neuronal cell-type-specific ablation. Using these tools, we
have investigated the neural control of feeding, in which
captured food is vectorially transferred from the margin of the
umbrella to the central mouth. We find that directional infolding
of the umbrella is controlled by anatomically cryptic neural

ll
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Wrinkling and folding appear universally during the growth 
of soft and natural systems1–5. During brain development, 
wrinkling occurs at two stages: first, the emergence of 

folds along the neural tube separates and defines different brain 
regions, such as the left and right hemispheres6,7. Second, folding 
of the cortex contributes to the expansion of brain surface area8–10. 
Reduced cortical folding (lissencephaly) is one of the manifestations 
of a severe neurodevelopmental disorder, which is accompanied 
with intellectual disability and reduced life expectancy11,12. From a 
physical perspective, surface wrinkles emerge as a mechanical insta-
bility when an elastic material is under compression13. At low forces, 
the material is compressed in the direction of the force and expands 
perpendicular to it, thus resulting in strain. Beyond a critical force, 
the material will exhibit folding and wrinkling to release the com-
pression, without further increase in strain energy. Compression 
forces and wrinkling can arise internally during differential swell-
ing of polymer gels, due to solvent absorption14–19. When the outer 
region of a gel is swelling faster than the interior, the mismatch 
leads to residual strain and results in periodic wrinkling. Similarly, 
wrinkling can arise during in vivo development both from non-
homogeneous tissue growth20, and localized cytoskeletal contrac-
tion5,21,22. Here, we study the emergence of folding during in vitro 
brain organoid development, characterize the physical mechanisms 
which lead to differential growth, and reveal the underlying critical 
and scaling behaviour.

Recent breakthroughs in stem-cell technologies enable three-
dimensional culturing of human stem cells, which develop into 
organ-like structures, and exhibit remarkable self-organization and 
collective behaviour (‘organoids’)23–28. However, three-dimensional 
growth to a millimetre scale without vasculature leads to cell death 
in the organoid core, as diffusion becomes inefficient for nutrient 
supply. Furthermore, tissue thickness obstructs optical imaging 
and real-time microscopy is carried out in organoid slices. Here, we 
present an on-chip approach, which enables development of human 

brain organoids to millimetre diameter, together with efficient 
nutrient exchange by diffusion, and in situ whole-organ fluorescent 
live imaging over several weeks.

Human embryonic stem cell aggregates were inserted into a 
microfabricated compartment29 of height h =  150 ±  10 µ m, and 
filled with collagen-laminin-based hydrogel (Matrigel™) (Fig. 1a-d, 
Supplementary Fig. S1, Methods). Within 1–3 days, the homoge-
neous and isotropic cell aggregate self-organized into a spherical 
shell structure surrounding a small cavity (lumen) (Fig. 1e, Day 3,  
Supplementary Fig. S2). During the first week, the organoid 
expanded by a factor of 20 to an area of 0.2 ±  0.05mm2 and a thick-
ness of t =  50–200 μ m (Fig. 1e Day 4–6, Supplementary Figs. S3, S4). 
The cells in the organoid attained a bipolar morphology, extend-
ing from the inner (apical) surface of the organoid, r =  0, to the 
outer (basal) surface, r =  t (Fig. 1d). The cell nuclei were radially 
oriented (Fig. 1d) and performed an up-and-down radial motion 
coupled to the cell cycle, with cell division at the inner surface, r =  0 
(Supplementary Movie S1). This mimics the developing brain ven-
tricular zone, which is composed of proliferating neuronal stem 
cells30. The developing organoid exhibited enrichment of cerebral 
cortex specific genes31, including FOXG1, PAX6, EMX2 and LHX2, 
as revealed by RNA sequencing (Fig. 1f, Supplementary Fig. S5), 
and an increase in genes typical for radial glia cells and neurons, 
accompanied by a corresponding decrease in pluripotent cell mark-
ers (Supplementary Figs. S5,6). By day 30, immunostaining revealed 
a layer of NEUN+ neurons surrounding the PAX6+ progenitor cells 
(Supplementary Fig. S7). These findings indicate that the on-chip 
organoid approach successfully mimics the early developing cortex.

In the second week of development we observed the emergence 
of surface instabilities (Fig. 1e; days 6–11). The two-dimensional 
wrinkling index, =W L

L
G

f
 was computed as the contour length, LG, 

normalized by the length, LF, of an outer convex contour aver-
aged over N =  14 organoids (Fig. 2a,c). The wrinkling dynamics 
exhibited an onset at days 6–8, followed by a maximal wrinkling 
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Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel 
models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these 
ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro develop-
ment and self-organization of human brain organoids in a microfabricated compartment that supports in situ imaging over a 
timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are 
indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contrac-
tion at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength 
exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth 
brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here 
does not include the neuronal migration seen in vivo, it models the physics of the folding brain remarkably well. Our on-chip 
approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic 
human brain.
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organoids. The curvature was measured by averaging the tangent 
angle θ(r) derivative along the surface perimeter contour < ∂ rθ(r)>  
in 7–10 organoids. Notably, the effect of blebbistatin was irrevers-
ible. By comparing our results against the swelling gel model17, we 
conclude that the cytoskeleton inhibition drug effectively acts to 
soften the elasticity of the organoid core, EB. A soft core, EB< ES, 
is easily pulled and follows the outer surface folds, allowing long-
wavelength (small-curvature) folds. In contrast, a stiff core, EB≫ ES, 
retains its original shape during the swelling process and results in 
short-wavelength folds and high curvature.

Next, we studied the short-term effects of cytoskeleton inhi-
bition, using blebbistatin (Fig. 4c), nocodazole, which disturbs 
microtubules polymerization, and Rho-associated coiled-coil con-
taining protein kinase (ROCK) inhibitor, which disrupts myosin 
contractility and actin polymerization22. Additionally, we used laser 
microdissection to irradiate cells in the organoid core, while keep-
ing the perimeter cells intact (Fig. 4d, Supplementary Fig. S14). All 

treatments resulted in expansion of the inner surface (Fig. 4c,d), 
and a reduction in perimeter thickness (Fig. 4e). Blebbistatin treat-
ment resulted in an increase of the cellular inner surface area from 
19 ±  0.5 μ m2 to 50 ±  2 μ m2 (Fig. 4f). Laser microdissection resulted 
in a relative inner surface area of 12 ±  2% (Supplementary Fig. S14). 
The neuroepithelium thickness after the treatment, t, is described 
by a single linear function of the thickness before treatment, t0, for 
all drugs and including the microdissection (Fig. 4e,i). The reduc-
tion in thickness is Δ t =  t–t0 =  − 0.22t0–5 μ m (Fig. 4e). Lifeact-
GFP fluorescence intensity along the inner surface was reduced  
(Fig. 4h,j), which is attributed to disassembly of actomyosin fila-
ments. The outer surface fluorescence increased, which may be 
due to redistribution of actin within the cell, as the total amount 
of actin is preserved. Additionally, a decrease in the aspect ratio of 
the nucleus was observed from R1/R2 =  2.6 ±  0.3 before treatment, to 
R1/R2 =  1.9 ±  0.1 after blebbistatin treatment, and R1/R2 =  2.02 ±  0.16 
after treatment with ROCK inhibitor (Fig. 4k,l). Overall, these data 
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indicate that the apical surface is actively contracted by the cellular 
cytoskeleton, and contributes to the effective stiffness of the organ-
oid core (Fig. 4g).

We next studied the effect of LIS1 heterozygous (+ /− ) mutation 
(Fig. 5a,b). The mutation is associated with lissencephaly, which 
is a severe smooth brain malformation11,36,37. The LIS1 protein is 

involved in several key functions, including proliferation and neu-
ronal migration, as well as in the regulation of molecular motors 
and the cell cytoskeleton38–45. Three isogenic mutant cell-line clones 
were generated, using CRISPR/Cas9 genome editing, and expressed 
reduced LIS1 protein levels (Supplementary Fig. S15). The LIS1+/− 
organoids followed the same neuronal development pathway as 
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Fig. 5 | LIS1+/− mutation results in lissencephalic organoids, modified ECM and cytoskeleton, and reduced cell elasticity. a,b, Images of wild-type  
(WT) and LIS1 mutant organoids (LIS1+ /-), respectively. c, Expression data of extra cellular matrix (ECM) and cytoskeleton related genes (N!= !3).  
d–g, Distribution of organoid thickness (d,f) and wrinkling wavelength (e,g) for WT (d,e) and LIS1+ /−  (f,g) (N!= !5). h, Wrinkle wavelength as a function of 
thickness. i, Tangent correlation function, < cos(θ(Δ r))> , between two points at a distance r along the organoid surface (N!= !9 WT, 10 LIS1+ /− ). At short 
distances the correlation decreases linearly, 1− r/lp. WT organoids exhibit correlation peaks (arrowheads). Inset: correlation functions of healthy (blue) 
and lissencephalic (orange) human brains. j, Average curvature < |∂ rθ(r)|> of WT and three different and isogenic LIS1+ /−  clones (N!= !9–11). k, Elastic 
modulus of WT and LIS1+ /−  embryonic stem cells (ES) and neuronal progenitors (NP) from several thousand force curves (N!= !7–10). Inset, an illustration 
of AFM measurements. l, Nuclear velocities during apical (inward) and basal (outward) motion for WT and LIS1+ /−  (N!= !15). m, Two-dimensional diagram 
of nuclear area A and radial-position r/t of LIS1+ /−  nuclei. Orange colour intensity indicates the percentage of nuclei at each point. Black line and arrows 
indicate progression with time. n, Nuclear area growth, over a cell-cycle period, in the outer (Out, r/t > 0.5) and inner (In, r/t< 0.5) parts of the organoid  
for WT (same as Fig. 2f) and LIS1 + /− . Kolmogorov–Smirnov test was used to compare the WT and LIS1+ /−  distributions. Scale bars are 200!μ m (a,b), 
50!μ m (c) and 5!μ m(n). Error bars represent s.e.m. Asterisks represent statistical significance (*p!< !0.05,**p!< !0.01,***p!< !0.001). The horizontal line 
within the box plots (j,k) indicates the median, boundaries of the box indicate the 25th- and 75th -percentile, whiskers cover 99.3 percent of data, and red 
crosses indicate outliers.
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脳の「しわ」の物理モデルを
オルガノイドを使って検証

2023年度に読む論文（たとえば）
脳の「しわしわ」ってなんなんだ？

(Tallinen et al., 2016)
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・前期や後期終了後の割と暇なときに
本物のembryoを観ます
・日程は参加者の都合優先
・場所は概ね２号館のセミナー室

SG3の進め方


