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1 General Theory of LDP

Let X be a Polish space.

Definition (rate function)

A function I : X → [0,∞] is called a rate function if

(i) I �≡ ∞.

(ii) I has compact level sets, i.e., f−1([−∞, c]) = {x ∈
X : f(x) ≤ c} is compact for all c ∈ R.

For a rate function I and subset S ⊂ X, we define

I(S) := inf
x∈S

I(x).

Definition (Large Deviation Principle)

A sequence of probability measures (Pn) on X is said to

satisfy the large deviation principle (LDP) with rate n

and with rate function I if

(i) I is a rate finction.

(ii) lim supn→∞
1
n logPn(C) ≤ −I(C) ∀C ⊂ X closed.

(iii) lim infn→∞ 1
n logPn(O) ≥ −I(O) ∀O ⊂ X open.

Let (Pn) satisfy the LDP on X with rate n and with

rate function I. Let F : X → R be a continuous function

that is bounded from above.

Theorem (Varadhan’s Lemma)

lim
n→∞

1

n
log

∫
X

enF (x)Pn(dx) = sup
x∈X

[F (x)− I(x)].

Theorem (Tilted LDP)

We define Jn(S) :=
∫
S
enF (x)Pn(dx) (S ⊂ X Borel).

Then the sequence (PF
n ) defined by

PF
n (S) :=

Jn(S)

Jn(X)
, S ⊂ X Borel,

satisfies the LDP with rate n and with rate function

IF (x) := sup
y∈X

[F (y)− I(y)]− [F (x)− I(x)].

Theorem (Contraction Principle)

Let Y be a Polish space and T : X → Y be a continuous

map. Then the sequence of image probability measures

(Qn) := (Pn ◦ T−1) satisfies the LDP on Y with rate n

and with rate function J given by

J(y) := inf
x∈X:T (x)=y

I(x).

2 LDP for I.I.D. sequences

We assume that Xi take values in a finite set:

(i) Xi ∈ Γ = {1, 2, . . . , r} ⊂ N.

(ii) X1, X2, · · · are i.i.d. with marginal law ρ = (ρs)s∈Γ,

i.e., P(Xi = s) = ρs, ∀s ∈ Γ.

(iii) ρs > 0, ∀s ∈ Γ.

We introduce the empirical measure

Ln =
1

n

n∑
i=1

δXi ,

with δx denoting the point-mass at x ∈ R. Note that Ln

is a random probability measure on Γ. We write

M1(Γ) :=

{
ν = (ν1, ν2, . . . , νr) ∈ [0, 1]r :

r∑
s=1

νs = 1

}
.

We define the total variation distance on M1(Γ) by

d(μ, ν) =
1

2

r∑
s=1

|μs − νs|, μ, ν ∈ M1(Γ).

We note that (M1(Γ), d) is a Polish space.

Theorem (Sanov’s Theorem for the empirical measure)

We define

Pn(S) := P(Ln ∈ S), S ⊂ X Borel.

Then the sequence (Pn) satisfies the LDP with rate n

and with rate function

Iρ(ν) =

r∑
s=1

νs log

(
νs
ρs

)
.

Theorem (Property of rate function)

(i) Iρ is finite, continuous and strictly convex on M1(Γ).

(ii) Iρ(ν) ≥ 0. Moreover, Iρ(ν) = 0 if and only if ν = ρ.

Corollary

For all a > 0,

lim
n→∞

1

n
logP (Ln ∈ Bc

a(ρ)) = − inf
ν∈Bc

a(ρ)
Iρ(ν),

where Bc
a(ρ) := {ν ∈ M1(Γ) : d(ν, ρ) > a}.
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3 Weyl and Schrödinger systems

Definition

A symplectic vector space is a pair (L,A) consisting

of a real vector space L and an anti-symmetric non-

degenerate form A.

Definition

A Weyl system over (L,A) is a pair (K,W ) consisting of

a complex separable Hilbert space K and a continuous

map W : L → U(K) satisfying the following equation:

W (z)W (z′) = exp

(
i

2
A(z, z′)

)
W (z + z′).

Example

Note that (Cn, A), where A(z, z′) = Im〈z, z′〉, is a sym-

plectic vector space if C
n is regarded as a real 2n-

dimensional vector space. Then (L2(Cn),W ) is a Weyl

system, where W is defined by the following equation:

for every z = x+ iy ∈ C
n,

(W (z)f)(u) = exp

(
−i〈y, u〉 − i

2
〈x, y〉

)
f(u+ x).

This is, especially, called the Schrödinger system.

Theorem

The Schrödinger system is irreducible. In other words,

the map W above is not decomposable into two maps

to non-trivial Hilbert spaces.

4 Gaussian Hilbert spaces and

Fock space

Let (Ω, F , P) be a probability space.

Definition

A Gaussian Hilbert space is a closed subspace of

L2(Ω, F , P) consisting of centred Gaussian random

variables.

Let H be a Gaussian Hilbert space defined on (Ω, F , P).

Definition

Let, for n > 0, Pn(H) be the closure in L2(Ω, F , P)

of the linear space Pn(H) = {p(ξ1, · · · , ξm) : p is a

polynomial of degree ≤ n; ξ1, · · · , ξm ∈ H; m < ∞}
and let H :n: = Pn(H) ∩ Pn−1(H)⊥. For n = 0 we let

H :0: = P0(H), the space of constants.

Theorem (Wiener chaos decomposition)

The spaces H :n:, n ≥ 0, are mutually orthogonal, closed

subspaces of L2(Ω, F , P) and

∞⊕
n=0

H :n: = L2(Ω, F(H), P),

where F(H) is the σ-field generated by the random vari-

ables in H.

Definition

πn denotes the orthogonal projection of L2(Ω, F , P)

onto H :n:. If ξ1, · · · , ξn ∈ H, their Wick product

:ξ1 · · · ξn:∈ H :n: is given by :ξ1 · · · ξn: = πn(ξ1 · · · ξn).

Let H�n be the symmetric tensor power of a Hilbert

space H. Since the multiplication (f1�· · ·�fn)� (fn+1�
· · · � fn+m) = f1 � · · · � fn+m may be extended to a

continuous bilinear operation H�n × H�m → H�(n+m)

for any n,m ≥ 0, the direct sum Γ∗(H) =
∑∞

n=0 H
�n is a

graded commutative algebra which is called the symmetric

tensor algebra of H. Its completion, the Hilbert space

Γ(H) =
⊕∞

n=0 H
�n, is called the (symmetric) Fock space

over H.

Now, let H be a Gaussian Hilbert space. By the prop-

erties of Wick products, we obtain the following funda-

mental result.

Theorem

If H is a Gaussian Hilbert space, then the map

ξ1�· · ·�ξn �→:ξ1 · · · ξn: defines a Hilbert space isometry

of H�n onto H :n:. Taken together for all n ≥ 0, these

maps define an algebra isomorphism of the symmetric

tensor algebra Γ∗(H) onto
⋃∞

n=0 Pn(H) with the Wick

multiplication; this extends to an isometry of the Fock

space Γ(H) onto
⊕∞

n=0 H
:n: = L2(Ω, F(H), P).
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