みんなで学ぶ数理物理 (大偏差原理) SG2023-10

2

(page 1)

General Theory of LDP

Let X be a Polish space.

Definition (rate function)

A function $I: X \to [0, \infty]$ is called a rate function if (i) $I \not\equiv \infty$.

(ii) I has compact level sets, i.e., $f^{-1}([-\infty, c]) = \{x \in$ $X: f(x) \leq c$ is compact for all $c \in \mathbb{R}$.

We assume that X_i take values in a finite set:

LDP for I.I.D. sequences

(i) $X_i \in \Gamma = \{1, 2, ..., r\} \subset \mathbb{N}.$

(ii) X_1, X_2, \cdots are i.i.d. with marginal law $\rho = (\rho_s)_{s \in \Gamma}$, i.e., $\mathbb{P}(X_i = s) = \rho_s, \forall s \in \Gamma.$

For a rate function I and subset $S \subset X$, we define

$$I(S) := \inf_{x \in S} I(x).$$

Definition (Large Deviation Principle) A sequence of probability measures (P_n) on X is said to satisfy the large deviation principle (LDP) with rate nand with rate function I if

(i) I is a rate function. (ii) $\limsup_{n \to \infty} \frac{1}{n} \log P_n(C) \le -I(C) \quad \forall C \subset X \text{ closed.}$ (iii) $\liminf_{n \to \infty} \frac{1}{n} \log P_n(O) \ge -I(O) \quad \forall O \subset X \text{ open.}$

Let (P_n) satisfy the LDP on X with rate n and with rate function I. Let $F: X \to \mathbb{R}$ be a continuous function that is bounded from above.

(iii) $\rho_s > 0, \forall s \in \Gamma.$

We introduce the empirical measure

$$L_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i},$$

with δ_x denoting the point-mass at $x \in \mathbb{R}$. Note that L_n is a random probability measure on Γ . We write

$$\mathfrak{M}_1(\Gamma) := \left\{ \nu = (\nu_1, \nu_2, \dots, \nu_r) \in [0, 1]^r : \sum_{s=1}^r \nu_s = 1 \right\}.$$

We define the total variation distance on $\mathfrak{M}_1(\Gamma)$ by

$$d(\mu,\nu) = \frac{1}{2} \sum_{s=1}^{r} |\mu_s - \nu_s|, \quad \mu,\nu \in \mathfrak{M}_1(\Gamma).$$

We note that $(\mathfrak{M}_1(\Gamma), d)$ is a Polish space.

Theorem (Sanov's Theorem for the empirical measure)

Theorem (Varadhan's Lemma)

$$\lim_{n \to \infty} \frac{1}{n} \log \int_X e^{nF(x)} P_n(dx) = \sup_{x \in X} [F(x) - I(x)].$$

Theorem (Tilted LDP) We define $J_n(S) := \int_S e^{nF(x)} P_n(dx)$ ($S \subset X$ Borel). Then the sequence (P_n^F) defined by

$$P_n^F(S) := \frac{J_n(S)}{J_n(X)}, \quad S \subset X \text{ Borel},$$

satisfies the LDP with rate n and with rate function

$$I^{F}(x) := \sup_{y \in X} [F(y) - I(y)] - [F(x) - I(x)].$$

Theorem (Contraction Principle)

We define

 $P_n(S) := \mathbb{P}(L_n \in S), \quad S \subset X \text{ Borel.}$

Then the sequence (P_n) satisfies the LDP with rate nand with rate function

$$I_{\rho}(\nu) = \sum_{s=1}^{r} \nu_s \log\left(\frac{\nu_s}{\rho_s}\right).$$

Theorem (Property of rate function) (i) I_{ρ} is finite, continuous and strictly convex on $\mathfrak{M}_1(\Gamma)$. (ii) $I_{\rho}(\nu) \geq 0$. Moreover, $I_{\rho}(\nu) = 0$ if and only if $\nu = \rho$.

Corollary

For all a > 0,

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P} \left(L_n \in B_a^c(\rho) \right) = - \inf_{\nu \in B_a^c(\rho)} I_\rho(\nu),$$

Let Y be a Polish space and $T: X \to Y$ be a continuous map. Then the sequence of image probability measures $(Q_n) := (P_n \circ T^{-1})$ satisfies the LDP on Y with rate n and with rate function J given by

$$J(y) := \inf_{x \in X: T(x)=y} I(x).$$

where $B_a^c(\rho) := \{\nu \in \mathfrak{M}_1(\Gamma) : d(\nu, \rho) > a\}.$

Reference

[1] Frank den Hollander, Large Deviations, American Mathematical Society, 2000, IBSN: 0-8218-1989-5.

みんなで学ぶ数理物理(場の量子論)

SG2023-10

(page 2)

Weyl and Schrödinger systems 3

Definition

A symplectic vector space is a pair (L, A) consisting of a real vector space L and an anti-symmetric nondegenerate form A.

Definition

Theorem (Wiener chaos decomposition) The spaces $H^{:n:}$, $n \ge 0$, are mutually orthogonal, closed subspaces of $L^2(\Omega, \mathcal{F}, \mathbf{P})$ and

$$\bigoplus_{n=0}^{\infty} H^{:n:} = L^2(\Omega, \mathcal{F}(H), \mathbf{P}),$$

where $\mathcal{F}(H)$ is the σ -field generated by the random vari-

A Weyl system over (L, A) is a pair (K, W) consisting of a complex separable Hilbert space K and a continuous map $W: L \to U(K)$ satisfying the following equation:

$$W(z)W(z') = \exp\left(\frac{i}{2}A(z,z')\right)W(z+z').$$

Example

Note that (\mathbb{C}^n, A) , where $A(z, z') = \operatorname{Im}\langle z, z' \rangle$, is a symplectic vector space if \mathbb{C}^n is regarded as a real 2ndimensional vector space. Then $(L^2(\mathbb{C}^n), W)$ is a Weyl system, where W is defined by the following equation: for every $z = x + iy \in \mathbb{C}^n$,

$$(W(z)f)(u) = \exp\left(-i\langle y, u \rangle - \frac{i}{2}\langle x, y \rangle\right) f(u+x)$$

This is, especially, called the *Schrödinger system*.

ables in H.

Definition

 π_n denotes the orthogonal projection of $L^2(\Omega, \mathcal{F}, \mathbf{P})$ onto $H^{:n:}$. If $\xi_1, \dots, \xi_n \in H$, their Wick product $\xi_1 \cdots \xi_n \in H^{:n:}$ is given by $\xi_1 \cdots \xi_n = \pi_n(\xi_1 \cdots \xi_n)$.

Let $H^{\odot n}$ be the symmetric tensor power of a Hilbert space H. Since the multiplication $(f_1 \odot \cdots \odot f_n) \odot (f_{n+1} \odot \cdots \odot f_n)$ $\cdots \odot f_{n+m}$ = $f_1 \odot \cdots \odot f_{n+m}$ may be extended to a continuous bilinear operation $H^{\odot n} \times H^{\odot m} \to H^{\odot (n+m)}$ for any $n, m \ge 0$, the direct sum $\Gamma_*(H) = \sum_{n=0}^{\infty} H^{\odot n}$ is a graded commutative algebra which is called the *symmetric* tensor algebra of H. Its completion, the Hilbert space $\Gamma(H) = \bigoplus_{n=0}^{\infty} H^{\odot n}$, is called the (symmetric) Fock space over H.

Now, let H be a Gaussian Hilbert space. By the prop-

Theorem

The Schrödinger system is irreducible. In other words, the map W above is not decomposable into two maps to non-trivial Hilbert spaces.

Gaussian Hilbert spaces and 4 Fock space

Let (Ω, \mathcal{F}, P) be a probability space.

Definition

A Gaussian Hilbert space is a closed subspace of $L^2(\Omega, \mathcal{F}, \mathbf{P})$ consisting of centred Gaussian random variables.

Let H be a Gaussian Hilbert space defined on (Ω, \mathcal{F}, P) .

erties of Wick products, we obtain the following fundamental result.

Theorem

If H is a Gaussian Hilbert space, then the map $\xi_1 \odot \cdots \odot \xi_n \mapsto \xi_1 \cdots \xi_n$: defines a Hilbert space isometry of $H^{\odot n}$ onto $H^{:n:}$. Taken together for all $n \ge 0$, these maps define an algebra isomorphism of the symmetric tensor algebra $\Gamma_*(H)$ onto $\bigcup_{n=0}^{\infty} \mathcal{P}_n(H)$ with the Wick multiplication; this extends to an isometry of the Fock space $\Gamma(H)$ onto $\bigoplus_{n=0}^{\infty} H^{:n:} = L^2(\Omega, \mathcal{F}(H), P).$

Reference

[1] Christopher J. Fewster and Kasia Rejzner, Algebraic Quantum Field Theory – an Introduction, arXiv:1904.0405.

Definition

Let, for n > 0, $\overline{\mathcal{P}}_n(H)$ be the closure in $L^2(\Omega, \mathcal{F}, P)$ of the linear space $\mathcal{P}_n(H) = \{p(\xi_1, \cdots, \xi_m) : p \text{ is a } \}$ polynomial of degree $\leq n; \xi_1, \cdots, \xi_m \in H; m < \infty$ and let $H^{:n:} = \overline{\mathcal{P}}_n(H) \cap \overline{\mathcal{P}}_{n-1}(H)^{\perp}$. For n = 0 we let $H^{:0:} = \overline{\mathcal{P}}_0(H)$, the space of constants.

[2] John C. Baez, Irving E. Segal and Zhengfang Zhou, Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Series in Physics. Princeton, N.J: Princeton University Press, 1992.

[3] Svante Janson, Gaussian Hilbert Spaces, Cambridge University Press, 2009.