みんなで学ぶ数理物理（大偏差原理）

1 General Theory of LDP

Let X be a Polish space．
Definition（rate function）
A function $I: X \rightarrow[0, \infty]$ is called a rate function if
（i）$I \not \equiv \infty$ ．
（ii）I has compact level sets，i．e．，$f^{-1}([-\infty, c])=\{x \in$ $X: f(x) \leq c\}$ is compact for all $c \in \mathbb{R}$ ．

For a rate function I and subset $S \subset X$ ，we define

$$
I(S):=\inf _{x \in S} I(x)
$$

Definition（Large Deviation Principle）

A sequence of probability measures $\left(P_{n}\right)$ on X is said to satisfy the large deviation principle（LDP）with rate n and with rate function I if
（i）I is a rate finction．
（ii） $\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(C) \leq-I(C) \quad \forall C \subset X$ closed．
（iii） $\liminf \inf _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(O) \geq-I(O) \quad \forall O \subset X$ open．
Let $\left(P_{n}\right)$ satisfy the LDP on X with rate n and with rate function I ．Let $F: X \rightarrow \mathbb{R}$ be a continuous function that is bounded from above．

Theorem（Varadhan＇s Lemma）

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \int_{X} e^{n F(x)} P_{n}(d x)=\sup _{x \in X}[F(x)-I(x)] .
$$

Theorem（Tilted LDP）
We define $J_{n}(S):=\int_{S} e^{n F(x)} P_{n}(d x)(S \subset X$ Borel $)$ ． Then the sequence $\left(P_{n}^{F}\right)$ defined by

$$
P_{n}^{F}(S):=\frac{J_{n}(S)}{J_{n}(X)}, \quad S \subset X \text { Borel }
$$

satisfies the LDP with rate n and with rate function

$$
I^{F}(x):=\sup _{y \in X}[F(y)-I(y)]-[F(x)-I(x)] .
$$

Theorem（Contraction Principle）

Let Y be a Polish space and $T: X \rightarrow Y$ be a continuous map．Then the sequence of image probability measures $\left(Q_{n}\right):=\left(P_{n} \circ T^{-1}\right)$ satisfies the LDP on Y with rate n and with rate function J given by

$$
J(y):=\inf _{x \in X: T(x)=y} I(x) .
$$

2 LDP for I．I．D．sequences

We assume that X_{i} take values in a finite set：
（i）$X_{i} \in \Gamma=\{1,2, \ldots, r\} \subset \mathbb{N}$ ．
（ii）X_{1}, X_{2}, \cdots are i．i．d．with marginal law $\rho=\left(\rho_{s}\right)_{s \in \Gamma}$ ， i．e．， $\mathbb{P}\left(X_{i}=s\right)=\rho_{s}, \forall s \in \Gamma$ ．
（iii）$\rho_{s}>0, \forall s \in \Gamma$ ．
We introduce the empirical measure

$$
L_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}
$$

with δ_{x} denoting the point－mass at $x \in \mathbb{R}$ ．Note that L_{n} is a random probability measure on Γ ．We write

$$
\mathfrak{M}_{1}(\Gamma):=\left\{\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{r}\right) \in[0,1]^{r}: \sum_{s=1}^{r} \nu_{s}=1\right\} .
$$

We define the total variation distance on $\mathfrak{M}_{1}(\Gamma)$ by

$$
d(\mu, \nu)=\frac{1}{2} \sum_{s=1}^{r}\left|\mu_{s}-\nu_{s}\right|, \quad \mu, \nu \in \mathfrak{M}_{1}(\Gamma) .
$$

We note that $\left(\mathfrak{M}_{1}(\Gamma), d\right)$ is a Polish space．
Theorem（Sanov＇s Theorem for the empirical measure） We define

$$
P_{n}(S):=\mathbb{P}\left(L_{n} \in S\right), \quad S \subset X \text { Borel. }
$$

Then the sequence $\left(P_{n}\right)$ satisfies the LDP with rate n and with rate function

$$
I_{\rho}(\nu)=\sum_{s=1}^{r} \nu_{s} \log \left(\frac{\nu_{s}}{\rho_{s}}\right) .
$$

Theorem（Property of rate function）
（i）I_{ρ} is finite，continuous and strictly convex on $\mathfrak{M}_{1}(\Gamma)$ ． （ii）$I_{\rho}(\nu) \geq 0$ ．Moreover，$I_{\rho}(\nu)=0$ if and only if $\nu=\rho$ ．

Corollary

For all $a>0$ ，

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(L_{n} \in B_{a}^{c}(\rho)\right)=-\inf _{\nu \in B_{a}^{c}(\rho)} I_{\rho}(\nu)
$$

where $B_{a}^{c}(\rho):=\left\{\nu \in \mathfrak{M}_{1}(\Gamma): d(\nu, \rho)>a\right\}$.

Reference

［1］Frank den Hollander，Large Deviations， American Mathematical Society，2000， IBSN：0－8218－1989－5．

みんなで学ぶ数理物理（場の量子論）

3 Weyl and Schrödinger systems

Definition

A symplectic vector space is a pair (L, A) consisting of a real vector space L and an anti－symmetric non－ degenerate form A ．

Definition

A Weyl system over (L, A) is a pair (K, W) consisting of a complex separable Hilbert space K and a continuous map $W: L \rightarrow U(K)$ satisfying the following equation：

$$
W(z) W\left(z^{\prime}\right)=\exp \left(\frac{i}{2} A\left(z, z^{\prime}\right)\right) W\left(z+z^{\prime}\right)
$$

Example

Note that $\left(\mathbb{C}^{n}, A\right)$ ，where $A\left(z, z^{\prime}\right)=\operatorname{Im}\left\langle z, z^{\prime}\right\rangle$ ，is a sym－ plectic vector space if \mathbb{C}^{n} is regarded as a real $2 n$－ dimensional vector space．Then $\left(L^{2}\left(\mathbb{C}^{n}\right), W\right)$ is a Weyl system，where W is defined by the following equation： for every $z=x+i y \in \mathbb{C}^{n}$ ，

$$
(W(z) f)(u)=\exp \left(-i\langle y, u\rangle-\frac{i}{2}\langle x, y\rangle\right) f(u+x)
$$

This is，especially，called the Schrödinger system．

Theorem

The Schrödinger system is irreducible．In other words， the map W above is not decomposable into two maps to non－trivial Hilbert spaces．

4 Gaussian Hilbert spaces and Fock space

Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space．

Definition

A Gaussian Hilbert space is a closed subspace of $L^{2}(\Omega, \mathcal{F}, \mathrm{P})$ consisting of centred Gaussian random variables．

Let H be a Gaussian Hilbert space defined on $(\Omega, \mathcal{F}, \mathrm{P})$ ．

Definition

Let，for $n>0, \overline{\mathcal{P}}_{n}(H)$ be the closure in $L^{2}(\Omega, \mathcal{F}, \mathrm{P})$ of the linear space $\mathcal{P}_{n}(H)=\left\{p\left(\xi_{1}, \cdots, \xi_{m}\right): p\right.$ is a polynomial of degree $\left.\leq n ; \xi_{1}, \cdots, \xi_{m} \in H ; m<\infty\right\}$ and let $H^{: n:}=\overline{\mathcal{P}}_{n}(H) \cap \overline{\mathcal{P}}_{n-1}(H)^{\perp}$ ．For $n=0$ we let $H^{: 0}=\overline{\mathcal{P}}_{0}(H)$ ，the space of constants．

Theorem（Wiener chaos decomposition）

The spaces $H^{: n:}, n \geq 0$ ，are mutually orthogonal，closed subspaces of $L^{2}(\Omega, \mathcal{F}, \mathrm{P})$ and

$$
\bigoplus_{n=0}^{\infty} H^{: n:}=L^{2}(\Omega, \mathcal{F}(H), \mathrm{P})
$$

where $\mathcal{F}(H)$ is the σ－field generated by the random vari－ ables in H ．

Definition

π_{n} denotes the orthogonal projection of $L^{2}(\Omega, \mathcal{F}, \mathrm{P})$ onto $H^{: n:}$ ．If $\xi_{1}, \cdots, \xi_{n} \in H$ ，their Wick product $: \xi_{1} \cdots \xi_{n}: \in H^{: n:}$ is given by $: \xi_{1} \cdots \xi_{n}:=\pi_{n}\left(\xi_{1} \cdots \xi_{n}\right)$ ．

Let $H^{\odot n}$ be the symmetric tensor power of a Hilbert space H ．Since the multiplication $\left(f_{1} \odot \cdots \odot f_{n}\right) \odot\left(f_{n+1} \odot\right.$ $\left.\cdots \odot f_{n+m}\right)=f_{1} \odot \cdots \odot f_{n+m}$ may be extended to a continuous bilinear operation $H^{\odot n} \times H^{\odot m} \rightarrow H^{\odot(n+m)}$ for any $n, m \geq 0$ ，the direct sum $\Gamma_{*}(H)=\sum_{n=0}^{\infty} H^{\odot n}$ is a graded commutative algebra which is called the symmetric tensor algebra of H ．Its completion，the Hilbert space $\Gamma(H)=\bigoplus_{n=0}^{\infty} H^{\odot n}$ ，is called the（symmetric）Fock space over H ．

Now，let H be a Gaussian Hilbert space．By the prop－ erties of Wick products，we obtain the following funda－ mental result．

Theorem

If H is a Gaussian Hilbert space，then the map
$\xi_{1} \odot \cdots \odot \xi_{n} \mapsto: \xi_{1} \cdots \xi_{n}$ ：defines a Hilbert space isometry of $H^{\odot n}$ onto $H^{: n:}$ ．Taken together for all $n \geq 0$ ，these maps define an algebra isomorphism of the symmetric tensor algebra $\Gamma_{*}(H)$ onto $\bigcup_{n=0}^{\infty} \mathcal{P}_{n}(H)$ with the Wick multiplication；this extends to an isometry of the Fock space $\Gamma(H)$ onto $\bigoplus_{n=0}^{\infty} H^{: n:}=L^{2}(\Omega, \mathcal{F}(H), \mathrm{P})$ ．

Reference

［1］Christopher J．Fewster and Kasia Rejzner，Algebraic Quantum Field Theory－an Introduction， arXiv：1904．0405．
［2］John C．Baez，Irving E．Segal and Zhengfang Zhou， Introduction to Algebraic and Constructive Quan－ tum Field Theory，Princeton Series in Physics．Prince－ ton，N．J：Princeton University Press， 1992.
［3］Svante Janson，Gaussian Hilbert Spaces，Cambridge University Press， 2009.

