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1.2 Statistical manifolds

1.2 Statistical manifolds
M : a manifold (an open domain in R")

h : a (semi-) Riemannian metric on M
V : an affine connection on M
~

Definition 1.2 (Kurose)
We say that the triplet (M, V, h) is a statistical manifold

L (Vxh)(Y, Z) = (Vyh)(X, Z).

\_

C(X,Y,Z) :=(Vxh)(Y,Z), cubic form, Amari-Chentsov tensor field

P
Definition 1.3
V*: the dual connection of V with respect to h

s Xh(Y, Z) = h(VLY, Z) + h(Y,VxZ).

\_

(M, V*,h): the dual statistical manifold of (M, V,h).

p
Remark 1.4 (Original definition by S.L. Lauritzen)
(M,g) : a Riemannian manifold

C : a totally symmetric (0, 3)-tensor field
We call the triplet (M, g, C) a statistical manifold.

\_
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1.3 Contrast functions

1.3 Contrast functions

M : a manifold (an open domain in R")

p(p,q) : a function on M X M
p[X1:-X;|Y1---Y;] : a function on M defined by

pIXy - XilYi -+ Yj](r) := (X1) )+ (Xi) o) (Y1) (o) * ** (¥5) @P(P @) [p=r

For example,

p[Xl](T‘) — X(p)p(paq)“gz;':
pIXIYI(r) = Xp)Yigp(p, d)llp=r
pIXY|Z|(r) = Xp)Yip)Z(g)p(psa)llp=r

/Deﬁnition 1.5 )
p: M xXx M — R ; a contrast function of M
def (1) p(w,w) = 0,
(2) p[X]] = p[|X] = 0,
(3) h(X,Y) := —p[X]|Y] is a semi-Riemannian metric on M.
o /
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1.3 Contrast functions

Example 1.6 When M 1= R", set
p(a,y) = Cllz —yllI,  (z,y) € R" X R™

Then p is a contrast function on R".

Example 1.7 S = {p(=x;0)}: a statistical model
- Kullback-Leibler divergence, relative entropy N

: :0")) = x:0)lo p(x; 6) x
PKL (p(iB,H),p(CB,H)) — /p( 99)1 gp(ac; 9’)d

\ = Fy [log p(x;0) — log p(x; 6')] )

8 d
8:|8;] = — [ 8;p(8)d’log p(8')d =—, 8= —
Pk 1|0i|0;] / p(0)9; log p(6") ® ( 59" 89,3)

— — /37: logp(O)(‘?;. log p(0')p(0)dx

— —g,f; the Fisher metric

pr1l0:0510] = — [ (3:01(0)81(8") + 01(0)2;1(8)01(8)) p(6)da

0=6'

0=6'

— —I‘,E;%,z the mixture connection
9

The KL-divergence induces the invariant statistical manifold (.S, v, gF ).
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1.3 Contrast functions

/Deﬁnition 1.7 )
p: M x M — R ; a contrast function of M
def (1) p(w,w) = 0,
(2) p[X][] = p[|X] = 0,
(3) h(X,Y) := —p[X]|Y] is a semi-Riemannian metric on M.
o /
/We can define affine connections V and V* by )
h(VxY,Z) = —p[XY|Z],
h(Y,ViZ) = —p|Y|XZ].
—> V,V* : torsion-free mutually dual with respect to h.
Vh,V*h : symmetric (0,3)-tensor fields.
o %
a N
Proposition 1.10
p(p,q) : a contrast function on M
—> The induced objects (M,V,h), (M,V*,h) are statistical mani-
folds.
o

J
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1.3 Contrast functions

/Tensor fields B and B* are defined by
h(B(X,Y)Z,V) := —p| XY Z|V]| + p|VxVyZ|V]
h(V, B*(X,Y)Z) i= —p[V|XY Z] + p[V |V} V3 Z]

B : the Bartlett tensor
B* : the dual Bartlett tensor

\_

p
Proposition 1.11 (Eguchi ’93)

R, R* : the curvature tensors of V, V7*, respectively.
—

R(X,Y)Z
R*(X,Y)Z

B(Y,X)Z — B(X,Y)Z,
B*(Y,X)Z — B*(X,Y)Z.

/
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2 Quasi-statistical manifolds

M : a manifold (an open domain in R")
h : a non-degenerate (0, 2)-tensor field on M
V : an affine connection on M

TV(X,Y) =VxY — VyX — [X,Y]: the torsion tensor of V

Definition 2.1
(M,V,h): a quasi-statistical manifold

def (VXh)(Ya Z) — (VYh)(X7 Z) = —h(TV(X, Y)7 Z)

In addition, if A is a semi-Riemannian metric, then we say that
(M,V,h) is a statistical manifold admitting torsion (SMAT).

-~

o

Definition 2.2
V*: (quasi-) dual connection of V with respect to h

s Xh(Y, Z) = h(VLY, Z) + h(Y, VxZ).

f

\_

Proposition 2.3
The dual connection V* of V 1is torsion free.

We remark that (V*)* # V in general.
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/Proposition 2.4
If h is symmetric h(X,Y) = h(Y, X)
or skew-symmetric h(X,Y) = —h(Y, X)
— (V*)*=V

\_

p
Proposition 2.5
(M,V*,h) : V* is torsion free and dual of V,
h is a non-degenerate (0,2)-tensor field,

—> (M, V,h) is a quasi-statistical manifold.
\_

/

(1) (M,V,h) is a Hessian manifold
= RY=0 and TV =0
<= (M,h,V,V*) is a dually flat space.

(2) (M,V,h) is a space of distant parallelism
— RV =0 and TV #0 (RV' =0, TV =0).

\_

p
Suppose that (M, V, h) is a statistical manifold admitting torsion.

%
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SMAT with the SLD Fisher metric (Kurose 2007)

Herm(d) : the set of all Hermitian matrices of degree d.
S : a space of quantum states

S ={P € Herm(d) | P > 0, traceP =1}

TpS = Ay N Ay = {X € Herm(d) | traceX = 0}
We denote by X the corresponding vector field of X.
4 I

For P € S, X € Ay, define wp(X) (€ Herm(d)) by

X = %(PWP(Y) + wp(X)P)

The matrix w(f ) is the “symmetric logarithmic derivative”.
\_ /

A Riemannian metric and an affine connection are defined as follows:

hp(jf/, 17) = %trace (P(wp(ff/)wp(?) + wp(f})wp(j(/))) ,

(Vf?)p — hp(X,Y)P — %(pr(?) + wp(Y)X).

The SMAT (S,V,h) is a space of distant parallelism.
(R=R"=0, T* =0, but T # 0)
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3 Pre-contrast functions

M  : a manifold (an open domain in R")
p(p, Z,;) : a function on M x TM
p[X1::-X;|Y1:--Y,;Z] : a function on M defined by

plXy- - XilY1 - Y;Z](r) = (X1) ) *(Xi) ) (Y1) 0" * * (¥5) (@) P(P5 Zg) |p=r

For example,
p[ |XZ]("°) — X(q)p(p7 ZQ)”gz,":

pIXY|Z)(r) = Xp)Y(q)p(P, Zg)|le=r
PIXY|ZV](r) = XY Z(q)p(P; Zg)|lp=r

/Deﬁnition 3.1
p: M XTM — R : a pre-contrast function on M
ot (1) p(p, /1 X1 + f2X2) = fip(p, X1) + fap(p, X2),
<— (2) p[|X] = 0 (i.e. Vr € M, p(r, X,) = 0),
(3) h(X,Y) := —p[X|Y] is non-degenerate.

\_ /

Example 3.2
p(p,q) : contrast function —> X,p(p, q) : pre-contrast function
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-
Proposition 3.3

We can define affine connections V and V* by

Moreover, V,V* :
: torsion-free

V*

h(V%Y, Z)
h(Y,VxZ)

= —p[XY|Z],
= —plY | X Z].

mutually dual with respect to h.

- /

(Proof) Xh(Y, Z) —XplY|Z] = —p|XY|Z] — plY | X Z]
= h(VLYY,Z)+ h(Y,VxZ)

—p|XY|Z] + p[Y X |Z]
—pl[X,Y]|Z] = R([X,Y],2)

h(VEY — Vi X, Z)

Lemma 3.4
p(X,,q) : a pre-contrast function on M
—> (M, V,h) is a quasi-statistical manifold.
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/Tensor fields B and B* are defined by

h(D*(X,Y)Z,V) := —p[XY Z|V]
h(V,D(X,Y)Z) := —p[V|XY Z]

B(X,Y)Z := DxyZ — VxVyZ
B*(X,Y)Z := D%yZ — V4ViZ
(h(V,B(X,Y)Z) = —p[VIXYZ] + p[V|VxVyZ])

B : the Bartlett tensor
B* : the dual Bartlett tensor

\_

/Theorem 3.5
R, R* : the curvature tensors of V, V7*, respectively.
— R(X,Y)Z = B(Y,X)Z — B(X,Y)Z,
R*(X,Y)Z = B*(Y,X)Z — B*(X,Y)Z.

%
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4 Geometry of non-conservative estimating functions

1 Statistical models and statistical manifolds

2 Quasi-statistical manifolds

3 Pre-contrast functions

4 Geometry of non-conservative estimating functions
5 A toy example: questionnaire to students
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Statistical inference for curved exponential families

S : an exponential family
M : a curved exponential family embedded into S
T, ,xn : IN independent observations of the random variable x
distributed to p(x;u) € M
data

underlying

Estimator
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Statistical inference for curved exponential families

S : an exponential family
M : a curved exponential family embedded into S (dim M = m)
Tri1,++- ,xn : IN independent observations of the random variable x
distributed to p(x;u) € M
Given =% = (x1,--- ,Zn), a function L on U can be defined by

L(u) = p(xy;u)---plxn;u) = _1:[1 p(x;;u)
We call L a likelihood function.

N
log L(u) = logp(xi;u) + -+ +logp(zn;u) = > logp(wi; u)
1=1

We say that a statistic is the maximum likelihood estimator if it max-
imizes the likelihood function:

L(a) = max L(u) ( <— logL(u) = max log L(u))

Hence, the estimating equation is

log L(u) =0 (a=1,...,m)

uCL
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r = — Z x; (the sample mean of z!V)
N = — Z F;(x;) (the sample mean of the random variable F;.)

»(0) = Ee[logp(H)] (—¢(0) is the entropy of p(0))
Then the log likelihood is given by
N

log L(u) = Zlogp(wj;u) =) {Sj Fi(x;)0"(u) — ¢(9(U))}

j=1 Ui=1

= ) N {76 (u) — ¢(0(u))} .
i=1
On the other hand, the Kullback-Leibler divergence is given by
prr(P(1),p(u)) = ¢(7) +1p(0(u)) — ) 76" (u)
i=1

= 6(i) —  log L(u).

The maximum likelihood estimation 4 is the point in M which minimizes
the divergence from p(9).
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Estimation of voter transition probabilities

Votes cast (in the k-th constituency, k =1,...,N)

Election 2
Party C L Total X3 ~ B(mqy,0%)
Election C Xlk mir — Xlk mik sz ~ B(mzk, 62)
1 L Xor mop — Xogp| mar Xy 1L Xop
Total Y. my — Y my; X3 and X5, are not observed

We want to estimate the voter transition probabilities,

01, 0% : the probabilities that a voter who votes for parties C, L
in Election 1, votes for C in Election 2, respectively,

from the observed total Y; of voters who vote for party C in Election 2.

Each cast is carried out individually, but we can observe the marginals
only.

[The standard maximum likelihood method does not work. ]

Remark: B(m, 6) is the binomial distribution. P(x) = ,»,Cr0*(1 — )™ *
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Regular parametric estimation

. 0’ . _ .0’ p(y;el) .
prr (p(y;0')||p(y; 0)) = /p(y,H ) log (5:0) dy :

KL-divergence (contrast function)

. . 0,
s(y;0) = {s'(y;0)},s'(y;0) = — log p(y; 0) : score function for 6

-

00*
p ((8))e,p(y;0")) = —/si(y;H)p(y; 0")dy : (trivial) pre-contrast func-
\tion )
Election 2 (k=1,...N)
Party C L Total X3 ~ B(mq,0")
Election C X1 map — Xk | myy  Xop ~ B(may, 6?)
1 L Xor Mo — Xop | Mo, X 1L Xop
Total Y. my — Y m; X and Xy, are not observed

Quasi-score functions

q'(y;0) =) mik{y%y)%(e)} (i=1,2)

pk(0) = E[Yi] = my0' + ma,6?,
Vk(g) = V[Yk] = m1k91(1 — 01) —|— m2k92(1 — 02)
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- Regular parametric estimation N

p ((8))e,p(y;0")) = —/si(y;H)p(y; 0")dy : (trivial) pre-contrast func-
\tion )
Pre-contrast function

N
/ 7 / 8
p ((8:)0sp(y; 0)) = — > q'(uk; 0)p(u; 0) (0i)o = (89i>
k=1 p(y30)
- Induced geometric structure (SMAT) N

N
1 m? MMM

Riemannian metric: (0)) = 1k 1k 2k)
(050 = X 5, (mlkm% e

Dual affine connections:

. N 1 — 26° aql 8(]2
g — a’ (u: st(u: — 1T 1T T £ T
Lij1(0) = Eqg [{@q (Y3 0)}s (v 9)] 1; Vi(6)? kT (802 7 901
N
I:,(0) = > {8:0;p(y;0)}d' (y;0) = ) ‘le){aiajuk(e)} =0

Yy k=1
(R = R* =0, T*=0, but T #0)
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5 A toy example: questionnaire to students

The survey was carried out in my linear algebra class and calculus class.
(We regard each class as a constituency, N = 2)

Question 1: Where is your home town? (First ballot)

Nagoya city

suburbs of Nagoya

Gifu, Mie | somewhere else

Nagoya city

outside of Nagoya city

Question 2: Where is your place of residence?  (Second ballot)

Nagoya city

suburbs of Nagoya

Gifu, Mie | somewhere else

Nagoya city

outside of Nagoya city

We infer transposition probabilities

0': city — city

Election 2
Party| C L Total
Election C X1 My — X1 | Mg
1 L | Xop maop — Xop| Moy
Total Yk my — Yk my

22/27

0%: outside = city

(’C — ]-9:2)

X1k ~ B(myy, 6')

XZk ~ B(m2k:a 02)

Xk 1L Xog

X1 and X, are not observed



linear algebra place of residence calculus place of residence
city outside| total city outside| total
home city * * 14 city * * 6
town outside| x* * 37 outside | x* * 45
total 23 28 51 total 19 32 51
estimations using quasi-score functions
A1 83 Ao 32
0" = — ~ 0.8137, 0 = — ~0.3137
102 102

Since we used clickers, we could observe each cast. I

linear algebra place of residence calculus place of residence
city outside| total city outside| total
home city 14 0 14 city 5 1 6
town outside| 9 28 37 outside| 14 31 45
total 23 28 51 total 19 32 51
Sample ratios from observed data
. 19 —, 23
0 = — = 0.95, - = — ~ 0.2805
20 82
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Appendix: Optimal transport estimator

Suppose that we have no information about constituencies.

Election 2
Party C L Total
Election C X1 mi — X1| My
1 L X2 mo — X2 mo
Total my Mo m

Xl ~ B(ml, 91)

X2 ~ B(’ITLQ, 92)

X7 1 X5

X; and X5 are not observed

We want to estimate the voter transition probabilities,

0!, 0% : the probabilities that a voter who votes for parties C, L
in Election 1 votes for C in Election 2, respectively.
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Appendix: Optimal transport estimator

Total X; ~ B(m,,0%)

m4 X2 ~ B(mz, 02)

mo XlJ_LXz

m  X; and X, are not observed

Election 2
Party| C L
Election C * *
1 L * min(mz, ’I’T’LQ)
Total mq Mo
We suppose that mo < ms.
Election 2
Party C L Total
Election C mq 0 my
1 L mo — ’I’T’Lz ’ﬁ’l;z mo
Total my Mo m

mz—’ﬁ’bz

mo

This 2 X 2 contingency table implies the optimal transport mapping

form the marginal distribution {m,, m-} to {m, ms}.
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linear algebra place of residence calculus place of residence
city outside| total city outside| total
home city 14 0 14 city 6 0 6
town outside| 9 28 37 outside| 13 32 45
total 23 28 51 total 19 32 51
Optimal transport estimations
. 20 A 22
{ 0! = — =1, 0 = — ~ 0.2683
20 82

Since we used clickers, we could observe each cast. I

linear algebra place of residence calculus place of residence
city outside| total city outside| total

home city 14 0 14 city 5 1 6

town outside| 9 28 37 outside| 14 31 45

total 23 28 51 total 19 32 51

Sample ratios from observed data

20

19
' = — = 0.95,

23
= — =~ 0.2805
82
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Statistical inferences I

- Dually flat spaces ~

(x1,x2,...,xN): IN-independent observations

L(0) = p(x1;0)p(x2;0) - - - p(xN; 0)
\ﬁ Maximum likelihood estimator, Dually flat spaces

J

- Non-integrable geometry N

(1,...,xN): IN-independent events, but we cannot ob-
serve.

Likelihood functions do not exist in the sense above.

—> Non-conservative estimating function

K Statistical manifolds admitting torsion
J
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