擬似スコア関数とプレ・コントラスト関数の幾何学

MATSUZOE Hiroshi

Nagoya Institute of Technology

joint works with
HENMI Masayuki
(The Institute of Statistical Mathematics)

- 1 Statistical models and statistical manifolds
- 2 Quasi-statistical manifolds
- 3 Pre-contrast functions
- 4 Geometry of non-conservative estimating functions
- 5 A toy example: questionnaire to students

1 統計モデルと統計多様体

S が Ω 上の 統計モデル (またはパラメトリックモデル) $\stackrel{\text{def}}{\Longleftrightarrow} S$ が $\xi \in \Xi$ をパラメータとする確率密度関数族で

$$S = \left\{ p(x; \xi) \left| \int_{\Omega} p(x; \xi) dx = 1, p(x; \xi) > 0, \xi \in \Xi \subset R^n
ight\}.$$

S を $\{\Xi; \xi^1, \ldots, \xi^n\}$ を局所座標系とする多様体(曲がった空間)とみなす。

$$g^F = (g_{ij}): S$$
 の F isher 計量

$$\stackrel{\text{def}}{\iff} g_{ij}^{F}(\xi) := \int_{\Omega} \left(\frac{\partial}{\partial \xi^{i}} \log p(x;\xi) \right) \left(\frac{\partial}{\partial \xi^{j}} \log p(x;\xi) \right) p(x;\xi) dx$$

$$= \int_{\Omega} \left(\frac{\partial}{\partial \xi^{i}} p_{\xi} \right) \left(\frac{\partial}{\partial \xi^{j}} \log p_{\xi} \right) dx \tag{1}$$

$$= \int_{\Omega} \frac{1}{p(x;\xi)} \left(\frac{\partial}{\partial \xi^{i}} p_{\xi} \right) \left(\frac{\partial}{\partial \xi^{j}} p_{\xi} \right) dx \tag{2}$$

Proposition 1.1 次の条件は同値

- $(1)\,g^F$ は正値.
- (2) $\{\partial_1 p_\xi, \dots, \partial_n p_\xi\}$ は線形独立.
- (3) $\{\partial_1 l_\xi, \ldots, \partial_n l_\xi\}$ は線形独立.

$$egin{aligned} \partial_i p_\xi & \stackrel{ ext{def}}{\Longrightarrow} m ext{-}表現,混合型表現 \ \partial_i l_\xi &= \left(rac{\partial_i p_\xi}{p_\xi}
ight) & \stackrel{ ext{def}}{\Longrightarrow} e ext{-}表現,指数型表現. \ & (p(x; heta) のスコア関数) \end{aligned}$$

1.2 Statistical manifolds

M: a manifold (an open domain in \mathbb{R}^n)

h: a (semi-) Riemannian metric on M

 $oldsymbol{
abla}$: an affine connection on M

Definition 1.2 (Kurose)

We say that the triplet (M, ∇, h) is a statistical manifold

$$\stackrel{ ext{def}}{\Longleftrightarrow} \quad (
abla_X h)(Y,Z) = (
abla_Y h)(X,Z).$$

 $C(X,Y,Z) := (\nabla_X h)(Y,Z)$, cubic form, Amari-Chentsov tensor field

Definition 1.3

 ∇^* : the dual connection of ∇ with respect to h

$$\stackrel{ ext{def}}{\Longleftrightarrow} \quad Xh(Y,Z) = h(
abla_X^*Y,Z) + h(Y,
abla_XZ).$$

 (M, ∇^*, h) : the dual statistical manifold of (M, ∇, h) .

Remark 1.4 (Original definition by S.L. Lauritzen)

(M,g): a Riemannian manifold

C: a totally symmetric (0,3)-tensor field

We call the triplet (M, g, C) a statistical manifold.

1.3 Contrast functions

: a manifold (an open domain in \mathbb{R}^n)

 $\rho(p,q)$: a function on $M \times M$

 $\rho[X_1\cdots X_i|Y_1\cdots Y_j]$: a function on M defined by

$$ho[X_1\cdots X_i|Y_1\cdots Y_j](r):=(X_1)_{(p)}\cdots (X_i)_{(p)}\,(Y_1)_{(q)}\cdots (Y_j)_{(q)}
ho(p,q)||_{\substack{p=r\q=r}}$$

For example,

$$ho[X|\,](r) = X_{(p)}
ho(p,q)||_{\substack{p=r\q=r}}^{p=r}$$
 $ho[X|Y](r) = X_{(p)}Y_{(q)}
ho(p,q)||_{\substack{p=r\q=r}}^{p=r}$ $ho[XY|Z](r) = X_{(p)}Y_{(p)}Z_{(q)}
ho(p,q)||_{\substack{p=r\q=r}}^{p=r}$:

Definition 1.5

 $\rho: M \times M \to \mathbb{R}$; a contrast function of M

$$(1) \rho(w,w) = 0,$$

$$\stackrel{ ext{def}}{\Longleftrightarrow} egin{array}{ll} (1) \;
ho(w,w) \, = \, 0, \ & \stackrel{ ext{def}}{\Longrightarrow} \; (2) \;
ho[X|] \, = \,
ho[|X| \, = \, 0, \end{array}$$

(3)
$$h(X,Y) := -\rho[X|Y]$$
 is a semi-Riemannian metric on M .

Example 1.6 When
$$M={\bf R}^n,$$
 set
$$\rho(x,y):=\frac{1}{2}||x-y||^2, \qquad (x,y)\in {\bf R}^n\times {\bf R}^n.$$

Then ρ is a contrast function on \mathbb{R}^n .

Example 1.7 $S = \{p(x; \theta)\}$: a statistical model

Kullback-Leibler divergence, relative entropy

$$egin{aligned}
ho_{KL}\left(p(x; heta),p(x; heta')
ight) &= \int p(x; heta)\lograc{p(x; heta)}{p(x; heta')}dx \ &= E_{ heta}\left[\log p(x; heta) - \log p(x; heta')
ight] \end{aligned}$$

$$egin{aligned}
ho_{KL}[\partial_i|\partial_j] &= -\int \partial_i p(heta)\partial_j' \log p(heta')dxigg|_{ heta= heta'} \left(\partial_i = rac{\partial}{\partial heta^i}, \; \partial_j' = rac{\partial}{\partial heta'^j}
ight) \ &= -\int \partial_i \log p(heta)\partial_j' \log p(heta')p(heta)dxigg|_{ heta= heta'} \ &= -g_{ij}^F \qquad ext{the Fisher metric} \
ho_{KL}[\partial_i\partial_j|\partial_k] &= -\int \left(\partial_i\partial_j l(heta)\partial_k' l(heta') + \partial_i l(heta)\partial_j l(heta)\partial_k' l(heta')
ight)p(heta)dxigg|_{ heta= heta'} \ &= -\Gamma_{ij,k}^{(m)} \qquad ext{the mixture connection} \end{aligned}$$

The KL-divergence induces the invariant statistical manifold $(S, \nabla^{(m)}, g^F)$.

1.3 Contrast functions

Definition 1.7

 $\rho: M \times M \to \mathbb{R}$; a contrast function of M

 $(1) \rho(w,w) = 0,$

 $\stackrel{\mathrm{def}}{\Longleftrightarrow} \begin{array}{l} \text{(1) } \rho(\omega,\omega) = 0, \\ \stackrel{\mathrm{def}}{\Longleftrightarrow} \begin{array}{l} \text{(2) } \rho[X] = \rho[|X] = 0, \end{array}$

(3) $h(X,Y) := -\rho[X|Y]$ is a semi-Riemannian metric on M.

We can define affine connections ∇ and ∇^* by

 $h(\nabla_X Y, Z) = -\rho[XY|Z],$

 $h(Y, \nabla_X^* Z) = -\rho[Y|XZ].$

 ∇, ∇^* : torsion-free mutually dual with respect to h.

 $\nabla h, \nabla^* h$: symmetric (0,3)-tensor fields.

Proposition 1.10

 $ho(p,q): a \ contrast \ function \ on \ M$

 \implies The induced objects (M, ∇, h) , (M, ∇^*, h) are statistical manifolds.

Tensor fields B and B^* are defined by

$$egin{aligned} h(B(X,Y)Z,V) &:= -
ho[XYZ|V] +
ho[
abla_X
abla_YZ|V] \ h(V,B^*(X,Y)Z) &:= -
ho[V|XYZ] +
ho[V|
abla_X^*
abla_Y^*Z] \end{aligned}$$

B: the Bartlett tensor

 B^* : the dual Bartlett tensor

Proposition 1.11 (Eguchi '93)

 $R, R^*: the curvature tensors of \nabla, \nabla^*, respectively.$

 \Longrightarrow

$$R(X,Y)Z = B(Y,X)Z - B(X,Y)Z, \ R^*(X,Y)Z = B^*(Y,X)Z - B^*(X,Y)Z.$$

2 Quasi-statistical manifolds

M: a manifold (an open domain in \mathbb{R}^n)

h: a non-degenerate (0,2)-tensor field on M

 ∇ : an affine connection on M

 $T^{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$: the torsion tensor of ∇

Definition 2.1

 (M, ∇, h) : a quasi-statistical manifold

$$\stackrel{ ext{def}}{\Longleftrightarrow} \ (
abla_X h)(Y,Z) - (
abla_Y h)(X,Z) = -h(T^
abla(X,Y),Z)$$

In addition, if h is a semi-Riemannian metric, then we say that (M, ∇, h) is a statistical manifold admitting torsion (SMAT).

Definition 2.2

 ∇^* : (quasi-) dual connection of ∇ with respect to h

$$\stackrel{ ext{def}}{\Longleftrightarrow} \quad Xh(Y\!,Z\!) = h(
abla_X^*Y\!,Z\!) + h(Y\!,
abla_X\!Z\!).$$

Proposition 2.3

The dual connection ∇^* of ∇ is torsion free.

We remark that $(\nabla^*)^* \neq \nabla$ in general.

Proposition 2.4

$$\begin{array}{l} \textit{If h is symmetric $h(X,Y)=h(Y,X)$} \\ \textit{or skew-symmetric $h(X,Y)=-h(Y,X)$} \\ \Longrightarrow (\nabla^*)^* = \nabla \end{array}$$

Proposition 2.5

 $(M, \nabla^*, h) : \nabla^* \text{ is torsion free and dual of } \nabla,$ h is a non-degenerate (0, 2)-tensor field, $\implies (M, \nabla, h) \text{ is a quasi-statistical manifold.}$

Suppose that (M, ∇, h) is a statistical manifold admitting torsion.

- (1) (M, ∇, h) is a Hessian manifold $\Leftrightarrow R^{\nabla} = 0$ and $T^{\nabla} = 0$ $\Leftrightarrow (M, h, \nabla, \nabla^*)$ is a dually flat space.
- $(2) \ (M,
 abla, h) ext{ is a space of distant parallelism} \ \iff \ R^{
 abla} = 0 ext{ and } T^{
 abla}
 eq 0 \ (R^{
 abla^*} = 0, \quad T^{
 abla^*} = 0).$

SMAT with the SLD Fisher metric (Kurose 2007)

Herm(d): the set of all Hermitian matrices of degree d.

 \mathcal{S} : a space of quantum states

$$\mathcal{S} = \{ P \in \operatorname{Herm}(d) \mid P > 0, \operatorname{trace} P = 1 \}$$

$$T_P\mathcal{S}\cong\mathcal{A}_0 \hspace{1cm} \mathcal{A}_0=\{X\in \mathrm{Herm}(d)\mid \mathrm{trace}X=0\}$$

We denote by X the corresponding vector field of X.

For $P \in \mathcal{S}, \ X \in \mathcal{A}_0$, define $\omega_P(\widetilde{X}) \ (\in \operatorname{Herm}(d))$ by

$$X = rac{1}{2}(P\omega_P(\widetilde{X}) + \omega_P(\widetilde{X})P)$$

The matrix $\omega(X)$ is the "symmetric logarithmic derivative".

A Riemannian metric and an affine connection are defined as follows:

$$egin{aligned} h_P(\widetilde{X},\widetilde{Y}) &= rac{1}{2} \mathrm{trace} \left(P(\omega_P(\widetilde{X})\omega_P(\widetilde{Y}) + \omega_P(\widetilde{Y})\omega_P(\widetilde{X}))
ight), \ \left(
abla_{\widetilde{X}} \widetilde{Y}
ight)_P &= h_P(\widetilde{X},\widetilde{Y}) P - rac{1}{2} (X \omega_P(\widetilde{Y}) + \omega_P(\widetilde{Y}) X). \end{aligned}$$

The SMAT (\mathcal{S}, ∇, h) is a space of distant parallelism.

$$(R = R^* = 0, T^* = 0, \text{ but } T \neq 0)$$

3 Pre-contrast functions

 $M : \text{a manifold (an open domain in } R^n)$ $\rho(p,Z_q) : \text{a function on } M \times TM$ $\underline{\rho[X_1\cdots X_i|Y_1\cdots Y_jZ]} : \text{a function on } M \text{ defined by }$ $\overline{\rho[X_1\cdots X_i|Y_1\cdots Y_jZ](r)} := (X_1)_{(p)}\cdots(X_i)_{(p)}(Y_1)_{(q)}\cdots(Y_j)_{(q)}\rho(p,Z_q)||_{\substack{p=r\\q=r}}}$ For example, $\rho[|XZ](r) = |X_{(q)}\rho(p,Z_q)||_{\substack{p=r\\q=r}}}$ $\rho[XY|Z](r) = |X_{(p)}Y_{(q)}\rho(p,Z_q)||_{\substack{p=r\\q=r}}}$ $\rho[XY|ZV](r) = |X_{(p)}Y_{(p)}Z_{(q)}\rho(p,Z_q)||_{\substack{p=r\\q=r}}}$

:

Definition 3.1

 $ho: M imes TM o ext{R}: ext{a pre-contrast function on } M \ (1) \
ho(p, f_1X_1 + f_2X_2) = f_1
ho(p, X_1) + f_2
ho(p, X_2), \ \stackrel{ ext{def}}{\Longleftrightarrow} \ (2) \
ho[|X] = 0 \ ext{(i.e.} \ orall r \in M,
ho(r, X_r) = 0), \ (3) \ h(X,Y) := ho[X|Y] \ ext{ is non-degenerate.}$

Example 3.2

 $ho(p,q): contrast \ function \Longrightarrow X_q
ho(p,q): pre\text{-}contrast \ function$

Proposition 3.3

We can define affine connections ∇ and ∇^* by

$$egin{aligned} h(
abla_X^*Y,Z) &= -
ho[XY|Z], \ h(Y,
abla_XZ) &= -
ho[Y|XZ]. \end{aligned}$$

Moreover, ∇ , ∇^* : mutually dual with respect to h.

 $abla^*$: torsion-free

$$(ext{Proof}) \hspace{1cm} Xh(Y,Z) = -X
ho[Y|Z] = -
ho[XY|Z] -
ho[Y|XZ] \ = h(
abla_X^*Y,Z) + h(Y,
abla_XZ) \ h(
abla_X^*Y -
abla_Y^*X,Z) = -
ho[XY|Z] +
ho[YX|Z] \ = -
ho[[X,Y]|Z] = h([X,Y],Z)$$

Lemma 3.4

 $ho(X_p,q): a \ pre ext{-}contrast \ function \ on \ M$

 $\implies (M, \nabla, h)$ is a quasi-statistical manifold.

Tensor fields B and B^* are defined by

$$h(D^*(X,Y)Z,V):=-
ho[XYZ|V] \ h(V,D(X,Y)Z):=-
ho[V|XYZ]$$

$$egin{aligned} B(X,Y)Z &:= D_{X,Y}Z -
abla_X
abla_YZ \ B^*(X,Y)Z &:= D_{X,Y}^*Z -
abla_X^*
abla_Y^*Z \end{aligned}$$

$$(h(V,B(X,Y)Z) = -\rho[V|XYZ] + \rho[V|\nabla_X\nabla_YZ])$$

B: the Bartlett tensor

 B^* : the dual Bartlett tensor

Theorem 3.5

R, R^* : the curvature tensors of ∇ , ∇^* , respectively.

$$\Longrightarrow \qquad R(X,Y)Z = B(Y,X)Z - B(X,Y)Z, \ R^*(X,Y)Z = B^*(Y,X)Z - B^*(X,Y)Z.$$

4 Geometry of non-conservative estimating functions

- 1 Statistical models and statistical manifolds
- 2 Quasi-statistical manifolds
- 3 Pre-contrast functions
- 4 Geometry of non-conservative estimating functions
- 5 A toy example: questionnaire to students

Statistical inference for curved exponential families

S: an exponential family

M: a curved exponential family embedded into S

 $x_1, \cdots, x_N : N$ independent observations of the random variable x distributed to $p(x; u) \in M$

Statistical inference for curved exponential families

S: an exponential family

M: a curved exponential family embedded into S (dim M=m)

 $x_1, \dots, x_N : N$ independent observations of the random variable x distributed to $p(x; u) \in M$

Given $x^N = (x_1, \dots, x_N)$, a function L on U can be defined by

$$L(u) = p(x_1; u) \cdots p(x_N; u) = \prod_{i=1}^n p(x_i; u)$$

We call L a likelihood function.

$$\log L(u) = \log p(x_1;u) + \cdots + \log p(x_N;u) = \sum_{i=1}^N \log p(x_i;u)$$

We say that a statistic is the maximum likelihood estimator if it maximizes the likelihood function:

$$L(\hat{u}) = \max_{u \in U} L(u) \qquad \left(\iff \log L(\hat{u}) = \max_{u \in U} \log L(u)
ight)$$

Hence, the estimating equation is

$$\frac{\partial}{\partial u^a} \log L(u) = 0$$
 $(a = 1, \dots, m)$

$$ar{x} = rac{1}{N} \sum_{N} x_i$$
 (the sample mean of x^N) $\hat{\eta}_i = rac{1}{N} \sum_{j=1}^N F_i(x_j)$ (the sample mean of the random variable F_i .) $\phi(heta) = E_{ heta}[\log p(heta)]$ $(-\phi(heta)$ is the entropy of $p(heta)$)

Then the log likelihood is given by

$$egin{align} \log L(u) &= \sum_{j=1}^N \log p(x_j;u) = \sum_{j=1}^N \left\{ \sum_{i=1}^n F_i(x_j) heta^i(u) - \psi(heta(u))
ight\} \ &= \sum_{i=1}^n N \left\{ \hat{\eta}_i heta^i(u) - \psi(heta(u))
ight\}. \end{split}$$

On the other hand, the Kullback-Leibler divergence is given by

$$egin{align}
ho_{KL}(p(\hat{\eta}),p(u)) &= \phi(\hat{\eta}) + \psi(heta(u)) - \sum_{i=1}^{N} \hat{\eta}_i heta^i(u) \ &= \phi(\hat{\eta}) - rac{1}{N} \log L(u). \end{split}$$

The maximum likelihood estimation \hat{u} is the point in M which minimizes the divergence from $p(\hat{\eta})$.

Estimation of voter transition probabilities

Votes cast (in the k-th constituency, k = 1, ..., N)

We want to estimate the voter transition probabilities,

 θ^1, θ^2 : the probabilities that a voter who votes for parties C, L in Election 1, votes for C in Election 2, respectively,

from the observed total Y_k of voters who vote for party C in Election 2.

Each cast is carried out individually, but we can observe the marginals only.

The standard maximum likelihood method does not work.

Remark: $B(m, \theta)$ is the binomial distribution. $P(x_k) = {}_m C_k \theta^k (1 - \theta)^{m-k}$

Regular parametric estimation

$$ho_{KL}\left(p(y; heta')||p(y; heta)
ight) = \int p(y; heta')\lograc{p(y; heta')}{p(y; heta)}dy: \ ext{KL-divergence (contrast function)} \ s(y; heta) = \{s^i(y; heta)\}, s^i(y; heta) = rac{\partial}{\partial heta^i}\log p(y; heta): ext{score function for } heta \
ho\left((\partial_i)_{ heta}, p(y; heta')
ight) = -\int s^i(y; heta)p(y; heta')dy: ext{(trivial) pre-contrast function} \ .$$

,	Election 2				$(k=1,\ldots N)$
	Party	\mathbf{C}	${f L}$	Total	$X_{1k} \sim B(m_{1k}, heta^1)$
Election	$\overline{\mathbf{C}}$	X_{1k}	$\overline{m_{1k}-X_{1k}}$	m_{1k}	$X_{2k} \sim B(m_{2k}, heta^2)$
1	$\overline{\mathbf{L}}$	X_{2k}	$\overline{m_{2k}-X_{2k}}$	m_{2k}	$X_{1k} \perp\!\!\!\perp X_{2k}$
	Total	Y_k	m_k-Y_k	m_k	X_{1k} and X_{2k} are not observed

Quasi-score functions

$$egin{aligned} q^i(y; heta) &= \sum_{k=1}^N rac{m_{ik}\{y_k - \mu_k(heta)\}}{V_k(heta)} & (i=1,2) \ \mu_k(heta) &= E[Y_k] = m_{1k} heta^1 + m_{2k} heta^2, \ V_k(heta) &= V[Y_k] = m_{1k} heta^1(1- heta^1) + m_{2k} heta^2(1- heta^2) \end{aligned}$$

Regular parametric estimation

$$ho\left((\partial_i)_{ heta},p(y; heta')
ight)=-\int s^i(y; heta)p(y; heta')dy: ext{(trivial) pre-contrast function}$$

Pre-contrast function

$$ho \left((\partial_i)_{ heta}, p(y; heta')
ight) = - \sum_{k=1}^N q^i(y_k; heta) p(y_k; heta') \qquad \qquad (\partial_i)_{ heta} = \left(rac{\partial}{\partial heta^i}
ight)_{p(y; heta)}$$

Induced geometric structure (SMAT)

$$egin{aligned} ext{Riemannian metric:} & (g_{ij}(heta)) = \sum_{k=1}^N rac{1}{V_k(heta)} \left(egin{array}{cc} m_{1k}^2 & m_{1k}m_{2k} \ m_{1k}m_{2k} & m_{2k}^2 \end{array}
ight) \end{aligned}$$

Dual affine connections:

$$egin{aligned} \Gamma_{\!m{i}j,l}(heta) &= E_{ heta}\left[\{\partial_{m{i}}q^{j}(y; heta)\}s^{l}(y; heta)
ight] = &\sum_{k=1}^{N}rac{1-2 heta^{i}}{V_{k}(heta)^{2}}m_{ik}m_{jk}m_{lk}, \left(rac{\partial q^{1}}{\partial heta^{2}}
eq rac{\partial q^{2}}{\partial heta^{1}}
ight) \end{aligned}$$

$$egin{align} \Gamma^*_{ij,l}(heta) &= \sum_y \{\partial_i\partial_j p(y; heta)\} q^l(y; heta) = \sum_{k=1}^N rac{m_{lk}}{V_k(heta)} \{\partial_i\partial_j \mu_k(heta)\} = 0 \ (R &= R^* &= 0, \quad T^* = 0, \quad ext{but} \quad T
eq 0) \end{gathered}$$

5 A toy example: questionnaire to students

The survey was carried out in my linear algebra class and calculus class. (We regard each class as a constituency, N=2)

Question 1: Where is your home town?

(First ballot)

Nagoya city	suburbs of Nagoya	Gifu, Mie	somewhere else
Nagoya city	outside	e of Nagoya	city

Question 2: Where is your place of residence? (Second ballot)

Nagoya city	suburbs of Nagoya	Gifu, Mie	somewhere else
Nagoya city	outside	e of Nagoya	city

We infer transposition probabilities

 θ^1 : city \Longrightarrow city θ^2 : outside \Longrightarrow city

linear	algebra place of residence						
		\mathbf{city}	outside	total			
home	city	*	*	14			
\mathbf{town}	outside	*	*	37			
	total	23	28	51			

calculus	place of residence				
	\mathbf{city}	outside	total		
$\overline{\text{city}}$	*	*	6		
outside	*	*	45		
total	19	32	51		

estimations using quasi-score functions -

$$\hat{ heta}^1 = rac{83}{102} \simeq 0.8137, \qquad \hat{ heta}^2 = rac{32}{102} \simeq 0.3137$$

Since we used clickers, we could observe each cast.

linear algebra		place of residence			calculus	plac	place of residence		
		\mathbf{city}	outside	total		city	outside	total	
home	city	14	0	14	$\overline{\text{city}}$	5	1	6	
town	outside	9	28	37	outside	14	31	45	
	total	23	28	51	total	19	32	51	

Sample ratios from observed data –

$$ar{ heta}^1 = rac{19}{20} = 0.95, \qquad ar{ heta}^2 \ = \ rac{23}{82} \simeq 0.2805$$

Appendix: Optimal transport estimator

Suppose that we have no information about constituencies.

		Elect	tion 2		
	Party	${f C}$	${f L}$	Total	$X_1 \sim B(m_1, heta^1)$
Election	$\overline{\mathbf{C}}$	X_1	m_1-X_1	m_1	$X_2 \sim B(m_2, heta^2)$
1	$oxed{\mathbf{L}}$	X_2	m_2-X_2	m_2	$X_1 \!\perp\!\!\!\perp X_2$
	Total	$ar{m}_1$	$ar{m}_2$	m	X_1 and X_2 are not observed

We want to estimate the voter transition probabilities,

 θ^1, θ^2 : the probabilities that a voter who votes for parties C, L in Election 1 votes for C in Election 2, respectively.

Appendix: Optimal transport estimator

Election 2

	Party	\mathbf{C}	${f L}$	Total	$X_1 \sim B(m_1, heta^1)$
Election	\mathbf{C}	*	*	m_1	$X_2 \sim B(m_2, heta^2)$
1	\mathbf{L}	*	$\min(m_2, ar{m}_2)$	m_2	$X_1 \!\perp\!\!\!\perp X_2$
	Total	$ar{m}_1$	$ar{m}_2$	m	X_1 and X_2 are not observed

We suppose that $\bar{m}_2 < m_2$.

Election 2

	Party	\mathbf{C}	${f L}$	Total	
Election	\mathbf{C}	m_1	0	$\overline{m_1}$	$\hat{ heta}^1=1$
1	\mathbf{L}	$m_2-ar{m}_2$	$ar{m}_2$	m_2	$\hat{oldsymbol{ec{ ho}}}^2 = m_2 - ar{m}_2$
	Total	$ar{m}_1$	\bar{m}_2	m	$v_{-}=\frac{m_2}{m_2}$

This 2×2 contingency table implies the optimal transport mapping form the marginal distribution $\{m_1, m_2\}$ to $\{\bar{m}_1, \bar{m}_2\}$.

linear	algebra place of residence						
		\mathbf{city}	outside	total			
home	city	14	0	14			
\mathbf{town}	outside	9	28	37			
	total	23	28	51			

calculus	place of residence				
	\mathbf{city}	outside	total		
$\overline{\text{city}}$	6	0	6		
outside	13	32	45		
total	19	32	51		

Optimal transport estimations -

$$\hat{ heta}^1 = rac{20}{20} = 1, \qquad \hat{ heta}^2 = rac{22}{82} \simeq 0.2683$$

Since we used clickers, we could observe each cast.

linear	near algebra place of residence		\mathbf{dence}	calculus	place of residence			
		\mathbf{city}	outside	total		city	outside	total
home	city	14	0	14	$\overline{ ext{city}}$	5	1	6
town	outside	9	28	37	outside	14	31	45
	total	23	28	51	total	19	32	51

Sample ratios from observed data –

$$ar{ heta}^1 = rac{19}{20} = 0.95, \qquad ar{ heta}^2 \, = \, rac{23}{82} \simeq 0.2805$$

Statistical inferences

Dually flat spaces

 (x_1, x_2, \ldots, x_N) : N-independent observations

$$L(\theta) = p(x_1; \theta)p(x_2; \theta) \cdots p(x_N; \theta)$$

⇒ Maximum likelihood estimator, Dually flat spaces

Non-integrable geometry -

 (x_1,\ldots,x_N) : N-independent events, but we cannot observe.

Likelihood functions do not exist in the sense above.

⇒ Non-conservative estimating function Statistical manifolds admitting torsion